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Abstract

The spectral analysis of a series of equally spaced samples of a time-

stationary process becomes d i f f icu lt when samp les are missing or sizabl e data

gaps occur within the interval of interest. A linear prediction algorithm can

be used to fill in the missing data with estimates that are spectrally con-

sistent wi th the data that are observed . Simulated and practical radar

examples demonstrate an improvement in resolution and a reduction of sidelobe

interference levels. Computer programs are provided which accomplish the

extrapolation and interpolation for complex data.
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A. Problem Definition

When a spectral transformation of a sampled process is performed, one

must account for any samples that are missing. Assigning a value of zero to

missing data prior to Fourier transformation , for example, introduces false

frequencies and greatly increases sidelobe levels. Clearly, an interpolation

scheme is needed that can cope with missing data and , at the same time, will

not degrade the spectral information contained in the data that are observed .

Occasional missing samples, well separated from each other, can be

estimated with simple interpolation procedures (polynomial or parabolic fits,

spline fits, etc.). However, data may be missing in such quantity that con-

ventional interpolation is inadequate; data gaps longer than the periods of

the sinusoidal components in the data cannot be easily bridged with simple

functions. A more sophisticated approach becomes necessary , and the use of a

data—adaptive linear prediction filter is one feasible alternative.

In radar data processing , missing data or data gaps may occur for a

variety of reasons:

(a) hardware fails to transmit pulses or receive echoes properly;

(b) radar transmits when it should be receiving echoes (range

eclipsing);

(c) resources are saturated by many targets that must be watched

simultaneously (panic);

(d) burst waveforms are purposely silent between bursts;

(e) poor signal-tc—noise makes detections sporadically unreliable.
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In any case , the missing samples (in these examples , cortplex samples with

amplitude and phase) must be filled in before Doppler processing can be

accomplished .

B. Description of the Method

The use of a linear prediction filter to extend a finite complex data

set before Fourier transformation was first proposed and described by Bowling

(1977). Applying this original algorithm , Tomlinson and Ackerson (1978)

demonstrated clutter and sidelobe reduction in the Doppler processing of a

train of radar pulses.

In the application of interest here , the prediction algorithm is used to

predict estimates of missing data by extrapolating from observed data. For

example, suppose an observation interval contains randomly missing samples and

gaps. The procedure is as follows:

(1) Locate and designate the missing samples to be estimated .

(2) Find the longest continuous span of data within which

there are no missing samples.

(3) Calculate an N-point linear prediction filter from the

longest Continuous span of data found in step (2).

(4) Calculate an estimate of each missing sample immediately

to the left and to the right of the longest continuous

span of data (a total of two estimates, one on each side).

(5) Return to step (2) until all missing data have been esti-

mated. Note that estimates from step (4) are to be treated

as observations on an equal basis with the original data.

2

I

-
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

~~~~~~~~~~~ 



That is, the longest continuous span of data is increasing

in length as estimates fill in the holes, one by one, to

the left and to the right.

When the longest continous span of data finally terminates at one of the

endpoints of the observation interval , estimates continue to be made toward

the other endpoint until all missing points have been filled in. The length

of the prediction filter may remain a constant , or vary according to the

current length of the longest span of data.

C. Simulated Examples

A simple example shows the improvement in the power spectrum of a data

set containing missing samples and gaps.

The real and imaginary parts of a sampled sum of three complex sinusoids

are shown in Figs. l(a,b). No noise has been added and no samples are missing .

Figure 1(c) is the true power spectrum calculated with a standard FFT. No

weighting function has been used .

Now if samples are randomly zeroed out and data gaps are introduced as

shown in Figs. 2(a,b), the power spectrum in Fig. 2(c) shows increased side—

lobe levels and false frequencies, both caused by processing without estimating

th.t missing data.

Figures 3(a , b) show the data set after the linear prediction algorithm is

applied , with the power spectrum shown in Fig. 3(c). Not only do Figs. 1(a,b)

overlay with 3 (a ,b) almost exactly, but their respective power spectra are

indistinguishable.
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Another simp le example demonstrates the performance of the linear pre-

diction algorithm when data gaps occur periodically, such as is the case for a

radar burst waveform.

Figures 4(a,b) represent the process of Figs. l(a,b) for which three data

gaps are present. Indeed , half of the data are missing from the observation

interval , and the gaps are longer than any period exhibited in the data. The

power spectrum of Fig. 4(c) is a very poor estimate of the true spectrum

(Fig. 1(c)) because no gaps have been filled in. Transforming only one of the

short spans of observed data gives a power spectrum with limited resolution ,

as shown in Fig. 4(d).

However , upon using the prediction algorithm on Figs. 4(a,b), we obtain

Figs. 5(a,b) and the power spectrum in Fig. 5(c), which is an excellent esti-

mate of the true spectrum.

In this case , the prediction algorithm has acted as a synergistic device

that, by linking short pieces of data together with spectrally consistent

estimates, allows a spectral transf orm to be performed over an ef fectively

longer piece of data. The whole, then, has more resolv ing power than any of

its parts.

It should be pointed out that the data gaps need not be periodic or equal

in length in order for the prediction algorithm to fill them in.

D. Radar Example

Radar is often used to identify targets from the time history of the

velocity spectrum of the target ’s motion about its center of mass. A series

or burst of radar pulses is Fourier analyzed , and the target’s velocity

4
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spectrum is observed . If not accounted for in the processing , missing pulses

can introduce false velocity components and lead to an incorrect character-

ization of the target.

For example, Fig . 6(a) shows the evolution of the velocity spectrum of a

tumbling object for which missing data and data gaps exist and are set to zero

in the radar pulse t ra in .  No est imation for the missing pulses has been done .

It is therefore not clear if the velocities indicated are actually from the

target or are an a r t i fac t  of the missing data. Figure 6 (b )  shows the evolu-

tion of the same velocity spectrum upon using the prediction algorithm before

Fourier transformation. The disappearance of some of the velocities cleans up

the spectral history and indicates which velocity components actually charac-

terize the target.

E. Limitations of the Method

Implicit in the use of a linear prediction filter is the assumption that

the data from which the filter is derived are coherent. The process being

sampled must be approximately stationary during the observation interval which

is being analyzed and within which the missing data and data gaps may occur.

Also , the pre3iction f i l t e r  works best when the spectral components are

approximately pure tones, confined to locally narrow bandwidths spaced within

the Nyquist bounds of the spectral transform domain.

F. Computer Codes

Appendix I lists three self—contained subroutines that accomplish the

method described in Section B. GAPFIL, the driving subroutine , calls COEFF

5
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and LNPRED , which calculate orediction filter coefficients and perform linear

predictions, respectively . Although the code is designed for complex data,

purely real data can be treated by setting the imag i nary components to zero

before calling CAPFIL. See Bowling (1977) for a more detailed description

of the linear prediction procedure.

G. Summary

• This paper proposes the use of a linear prediction algorithm to fill in

missing data and data gaps that may occur within an observation interval over

which a spectral transform is to be made. False frequencies and sidelobe

interference, which are artifacts of the missing samples, can be surpressed or

eliminated by replacing the missing samples with estimates that are spectrally

consistent with neighboring observed data. Large gaps can be smoothly bridged

that otherwise could not be satisfactorily interpolated by simpler schemes.
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Fig. 6. (a) Doppler history of tumbling object when missing data and data
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APPENDIX COMPUTER CODES

Listings for subroutines:

1) GAPFIL - driving program

2) COEFF - filter Coefficient calculations

3) LNPRED - estimation by linear prediction

13
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SUBRO UTINE GAP ?IL (IREAL , I I M A G , NPT S , I, A , PM , Ak , 81, 02)
C
C

CO M PLEX I, A , AA , 81, B2 , A R R A Y
D I M E N S I O N  1 ( 1 ) , A (1), I R E A L ( 1 ) ,  110A 3 ( 1)
D I M E N S I O N  P M ( 1 ) , AA (1) . 01( 1) , B 2 ( 1)
DIM ENSION A PRAY(2 5 6) , M JSS(12 8)

C
C
C I N P U T S  A R E :  I R E A L , X I M A G , NP TS
C
C OUTPUT S A R E  X R E A L , I I M A G .I , A
C
C
C THE AR GUMENTS OF THIS SUBROUTINE A P E :
C
C XREAL(NPTS)= ARRAY CONTAINING THE R E A L  P A R T  OF THE DATA
C XIMAG (NPTS) A R RAY C O N T A I N I N G  THE I M A G I N A R Y  PART 0? THE DATA
C NP T S~ THE N U M B E R  0? DATA POINTS ( I N L . L U D I W G  MISSING POINTS)
C Y ( N P T S ) =  CO M PLEX A R R A Y  OF DATA POINTS USED IN P R E D I C T I O N
C A (NCOE?F) = C O M P L E X  A R R A Y  0? PREDICTION COEFFICIENTS G E N E R A T E D
C W I T H I N  THIS  S U B R O U T I N E  (ICO EFF W I L L  P OT EXC~~ED NPT S/4 )
C P N ( N C O E F F ) = A R R A Y  OF ERROR PO W ER H I S T O R Y  AS FILTE R IS BUILT
C A A ( N C O E F F ) , B 1 ( N P T S ) , 0 2 ( H P T S )  WO R K A R R A Y S
C
C I N  THE A B O V E  D E S C R I P T I O N , THE M I N I M U M  S I Z E S  OF THE A R R A Y S
C AS USED I N TH I S S U B R O U T I N E  A R E  S P E C I F I E D
C
C
C ~‘H E LONG E ST S P A N  OF CO N TIGUO U S DATA IS F I R S T  LOCATED W I T H I N  THE
C I N T E R V A L  N P I S .  T H E N  T H E  M I S S I N G  DATA I N  T U E ADJACENT S A M P L E
C POSITIONS A l E  P R E D I C T E D  U S I N G  A L I N E A R  PRED I CT ION A L G O R I T H M .
C AS M I S S I N G  P O I N T S  A N D  G A PS A R E  FILLED I N , THE B A S I S  FROM W H I C H
C TIl E P R E D I C T I O N S  A P E  B E I N G  M A D E  IN ~. . RE A S E S I N  LENGTH;  NCOEF F
C THE LENGTH OF T H E  PREDICT ION FI LTER , IS  NOT A L L O W E D  TO EXCEED
C NPTS / 14 . T H E  D A T A  A R R A Y S  A R E  R E T U R N E D  W I T H  THE GAPS A N D
C M I S S I N G  P O I N T S  F I L L E D  IN .
C
C
C
C SEE L I N C O L N  R E P O R T  R M P —  122 FOP D E S C R I P T I O N  OF L I I J F A R  PREDICTION
C
C U NPT S IS G R E A T E R  T H A N  256 , I N C R E A S E  D I M E N S I O N  OF
C ‘ A R R A Y ’  TO A CCO M O OPI T E
C IF MOR E T H A N  12 A POINTS A R E  M I S S I N G , I N C R E A S E  D I M E N S I O N  3? ‘MISS’ .
C
C 
C
C STEP 1 : I D E N T I F Y  M I S S I N G  D A T .~.
C
C M I S S I N G  DATA AP E THOS E C O N S I D E P E t )  TO H A V E V A L U E S  OF ZE R O.  IF
C T H I S  C PIi E R I O N  IS NOT A P P R O P R I A T E  FOR Y O U R  A P P T I C A ’ T I O N , T H EN
C Y O J  W i L L  H A V E  TO R E N F I T E  STE ~ 1. NO MI S S IS  ‘ tHE N E I M R F P  OF
C M I S S I N G  t )A ’I A P O I N T S , A N D  ~ I S S ( J )  IS I H E  L O C A T I O N  OF ‘IHE JT H
C M I S S I N G  P O I N T .  ‘ t H U S , M I : ; S ( J )  C A N  H A V E  A N Y  V A L U E  BETWEF.N 1 A N D  NPT S.
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C
1 = 0
3 0

9 1 1+1
Xii) CM PLX(IIIkL (I),XINAG (I) )
IF (IREAL (I).IQ.O.O.IID.ZINA G (I).EQ.0.O) J J ~~1
IF (XP!*L(I).IQ.0.O.AID .IIMAG (I).E Q.0.O) MIS S (J) 1
I? (I .LT. I P T S)  GO TO 9
WONISS = J
IF ( W O M I S S . E Q . 0 )  RETURN

C
C 
C
C STEP 2 : SEARC H FOR LONGES T SPAN OF C O N T I N U O U S  DATA ,
C AND GENER AT E 2 N U M B E R S  (LI , L2) C H A R A C T E R I Z I N G  THE S P A N .
C

Li = 0
L2 = M I S S ( 1 )
N i  1

= 1
NA 1 N I SS( I )
I? ( I O M I S S . E Q . 1)  GO TO 30
DO 20 3 =2 , N O M ISS
JDIF = M I S S ( J ) — M I S S ( J — l )
IF ( J D I F . L E . N A X )  GO TO 20
Ml  = J — i
112 = 3
L 1 MI SS  ( M l )
L2 MI SS (Ii 2)
tI hI= J Ut!

20 CONTINUE
30 JDI? = N P T S — M I S S ( N O M I S S )

I? (JDIF .LE .MAX ) GO TO 34
Ni ~ N O M ISS

~ lIOliISS4l
LI = IIISS(M1 )
L2 NPT S + 1

C
C 
C
C STEP 3 : DEFINE N U M B E R  OF L I N E A R  P R E D I C T I O N  COEFFICIENTS ,
C AND PERFORM P R E D I C T I O N .
C

34 NCO E F ? ( L 2 - L 1 ) / 2
IF ( I C O E F ? . L T . 1 )  NCO !FF =2
IF (NC OEF?.GT. (NPTS ,/R$) ) W COEP~~~(N PTS/l4)
I i  L1+ 1
12 = L2—1
J z O
DO ‘$0 I I I , 12
J = J+ -1

‘$0 A RR AY(J) X (I)
NP = 3
Mt ’P2  = • T+2

C
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CALL CO !FP (MP. ARRAY , ICOEFF, A, PM, P0, A A , 81 , 82)
C

CALL LIPBED(RP, APP2, ARRAY , JCOR?. A)
C
C
C —I— 

C
C STEP 4 : RI—ESTAILISE NEAL AI D I M A G I N A R Y  ARRAYS.
C

I? (L1.GT .O) ZREAL (LI) — REAL (AUAY (l))
1? (Li .GT .0) XIMA G (L 1) —A IM &G (AUAY( 1))
IF (Ll.GT. 0) Z(Ll) &VEAY (1)

C
IF (L2 .LE .IPTS) IREAL(L2) a REA L(APRAY (IIPP2))
IF (L2.L!.IPTS) ZINAG (L2) AIWAG (ARRA Y (NPP2) )
I? (L2.LE .NPTS) X (L2) a ARRAY (MPP2)

C
Ni a ~~ — I
I? (N1 .GE .1) L1 NISS (N1)
I? (M1.LT .l) L 1 0
P2 a P2 +1
IF (N2 .LE.WONISS) L2 11S5(M2)
I? (12 .GT.IOuISS) L2 IPTS.1
I? ~a1.L?.~~.AID .a2.GT.IONISS) GO TO 50
GO ?0 3*

C
50 R ET UI W

END

16

~1 ______ ___________ _________ ___________ ________

__

________--
~~i 

- - - - -  
~
-T,--- ——-- -

~~~~~~~~
- — -  

— — 

—~- .- - - . - --



S U B R O U T I N E _C O E ? F ( N P T S . X , N COEFF , A . PM , PO , AA , B1 , 82)
C
C T H I S  S U B R O U T I N E  CALCULATES THE COMPLEX B U R G  COEFFICI ENTS
C ( H E R E  CALLED A R R A Y  A ) .  THE A L G O R I T H M S  U S E D  H E R E  AR E AR EXTENSION OP
C A L G O R I T H M S  D E S C R I B E D  BY A N D E R S O N  (G E OPHYS I CS , VOL 39 ,P!B. 197*)
C TO THE CASE OF A C O M P L E X  S E R I E S .
C
C P R O G R A M M E D  BY S . B .  B O W L I N G , MIT— LI NCOLN L A B O R A T O R Y , SEPT . 1976.
C

CO M PLEX X ,&,A A ,B 1,B2,X N OM ,DEN,TWO
DIMENSION I (1), A (1) ,AA (1) ,8I ( 1) ,B2 (i) ,PM(i)
T W O = C M P L I ( 2 . 0 , 0 . 0 )  -

P 0=0.0
DO 10 1 T 1 , W PTS
D U M M Y =  X ( I T ) *CO NJ G ( I ( I T ) )

10 P0 P0+ DUMMY
P0 P O / F L O A T ( N P T S )
NPI1 = IIP TS — i
81 ( i ) = I ( 1 )
82 ( N N 1 ) Z ( N P T S )
DO 20 IT= 2 , N M 1
81 (IT) =1(1’! )
I T M I = I T - 1

20 B2 ( IT M l ) = X ( I T )
DO 50 M = i , N CO E F F
M111 M — I
NMN NPTS — M
IF(ll .EQ. 1) GO TO 25
DO 21 ITS 1 ,N111

21 A A ( I T ) = A ( I T )
DO 22 I T 1 , NM M
Bi ( IT)  = 81 (IT)  — C O W J G ( A A ( M N 1 ) ) *B2 (IT )

22 B 2 ( I T ) = B2 ( I T . 1 ) — A A ( N I l 1 ) * B l ( I T + i )
25 XNOM C M P L X (0 .0 , 0.0 )

DE N CM PL X ( 0 . 0 ,0 .0)
DO 30 I T= 1 , N MM

- X N O N X N O M  • 82 ( I T ) SCONJG ( B 1 ( I T ) )
30 D E N = D E N  + 8 1 ( I T ) * C O N J G ( B 1 ( I T ) ) + 8 2 ( I T ) * C O N J G ( B 2 ( I T ) )

I F (  RE AL (DE N) .E Q . 0.0)  GO TO 35
A ( N )  TWO S (XNO N/D !1)
GO TO 36

35 A ( N ) C N P L I ( O . 0 , 0 .O)
36 PO W E R PO

IF (N .GT.  1) P O W E R = P M  (M 1)
D UMN Y A (N) *C O MJ G (A (N) )
P M ( N ) = P O W E R * ( 1 . 0  — D U MP Y )

IF (N . EQ. 1) GO TO SO
DO 40 ITa I ,M f l 1

110 A (I’! ) = AA (IT) —A (N )  *C ONJG ( A A  (N - IT) )
50 C O N T I N U E

R E T U R N
E N D
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SUBROUTINE LN PRE D (N1 ,N2 ,X ,NCOEF?,A)
C
C THI S SUBR OUTINE LINEARLY EXTENDS TN! COMPLEX DATA ARRAY ‘I’
C FR OM Ni POINTS TO P2 POINTS. THE ORIGINAL DATA IS CENTERED
C IN AN ARRAY O F P2 ELEMENTS A N D  BOTH A F O R W A R D  AND B A C K W A R D
C E XTENSION A R E  P E R F O R M E D  U N T I L  TH E TOTAL N U M B E R  0? POINTS IS 12.
C
C 11 O R I G I N A L  N U M B E R  OF POINTS I N A R R A Y  I
C N 2 = N U N B E R  OF POINTS TO W H I C H  A R R A Y  I IS EX T ENDED
C 1= C O M P L E X  A R R A Y  OF DATA SAMPLES , D I M E N S I O N  AT LEAST N2
C R COE ? F N U M B E R  OF PREDICTION FILTER COE ?FI C IEI TS
C A= COMPLEX ARRAY OF FILTER COEFFICIENTS , D I M E N S I O N  NCO !FP
C
C P R O G R A M M E D  BY S .B .  BOWLING , N I T — L I NCOLN L A B O R A T O R Y , SEPT. 1976.
C

COMPLEX l . A
D I M E N S I O N  I ( 1 ) , A ( 1 )

C
C SET UP U N I T S  FOR DO LOOPS
C

L 1 12/2 — P 1/2

L2= 12/2 + 11/2
I F (  R O D ( N 1 , 2) .EQ . 1 ) L2 L2+ 1

C
C S H I F T  O R I G I N A L  D A T A  TO M I D D L E  0? A R R A Y  I
C

DO 100 1 1 , 11
J N i  — ( 1 — 1 )
K L2 — ( I — I )

100 I ( K ) 1 (J)
C
C DO F O R W A R D  P R E D I C T I O N
C

P 3= N 2 — L 2
DO 200 1 1 , N 3
3 L2+ I
X (J) CM P L X  (0.0,0.0)
DO 200 K 1 , N COE ?F

200 1( 3) = 1(3) + A ( K ) *~ ( 3—K)
C
C DO B A C K W A R D  P R E D I C T I O N
C

DO 300 I l , L 1
3 L i —  ( I — i )
1(3) =CM PLX (0.0 ,0.0)
DO 300 K= i ,NCOEFF

300 I (J)  X (3) + C O NJG (A (K)  ) *X ( J + K )
C

RET U RN
END
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